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VISCOELASTIC VIBRATIONS OF A TRIANGULAR PLATE

UDC 534.121/122N. A. Chernyshov and A. D. Chernyshov

The problem of stationary vibrations of a viscoelastic equilateral triangular plate is treated. The
vibrations are caused by the action of a uniformly distributed load which varies harmonically and by
the motion of the simply supported boundary of the plate as a rigid body which vibrates at the same
frequency. The level lines of the vibration amplitude are studied and the graphs of the amplitude
distribution along the height of the triangle are given.

Sing, Ahmad, and Hilton [1] performed a finite-element analysis of vibrations of an elastic plate covered by
a viscoelastic damping layer and studied the effect of the parameters of the viscoelastic layer, the temperature, and
the elastic moduli of the plate on damping of free vibrations. Yuanyuan an Changjun [2] studied analytically the
stability of simply-supported, compressed viscoelastic rectangular plates on a viscoelastic foundation, developed a
model of the stability problem, and derived differential equations that govern the viscoelastic deformation of the
plate. Boshnich [3] proposed a method of calculating the forced transverse vibrations of thin rectangular plates with
allowance for energy losses in a cyclically deformed material upon forced harmonic excitation. In [3], the vibrations of
a nonconservative elastic plate system were studied by asymptotic methods of the nonlinear mechanics. Chernyshov
and Chernyshov [4] obtained an exact solution of the problem of vibrations of a triangular plate and gave expressions
for resonance frequencies.

1. Formulation of the Problem. For the linear stress state of a viscoelastic body, the stress tensor σij
is expressed in terms of the strain tensor eij and the strain-rate tensor εij [5]:

σx = λe(ex + ey) + 2µeex + λν(εx + εy) + 2µνεx,

σy = λe(ex + ey) + 2µeey + λν(εx + εy) + 2µνεy, τxy = 2µeexy + 2µνεxy.

Here λe and µe are the Lamé coefficients and λν and µν are the viscosity coefficients. According to [5], these
formulas can be rewritten in the form

σx =
E

1− ν2
(ex + νey) +

Eν
1− ν2

ν

(εx + ννεy),

σy =
E

1− ν2
(ey + νex) +

Eν
1− ν2

ν

(εy + ννεx), τxy = Gexy +Gνεxy.

Here

λe + 2µe =
E

1− ν2
, λe =

Eν

1− ν2
, G = 2µe,

(1.1)
λν + 2µν =

Eν
1− ν2

ν

, λν =
Eννν
1− ν2

ν

, Gν = 2µν .

The use of similar expressions for the viscous and elastic constants in Eq. (1.1) makes it possible to write
the dynamic equation of motion of a plate relative to the deflection W in a convenient form

De∇4W +Dν∇4Wt = q − ρHWtt, De =
EH3

12(1− ν2)
, Dν =

EνH
3

12(1− ν2
ν)
. (1.2)
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Let a viscoelastic equilateral triangular plate be subjected to the action of a uniformly distributed load which
varies according to the law q = q0 cosωt. The boundary of the simply supported plate vibrates harmonically as a
rigid body:

W
∣∣∣
Γ

= a cosωt+ b sinωt,
∂2W

∂n2

∣∣∣
Γ

= 0. (1.3)

We seek the solution of Eq. (1.2) in the form

W = U(x, y) cosωt+ V (x, y) sinωt. (1.4)

Substituting W from (1.4) into Eq. (1.2), we obtain the following system of differential equations for U and V :

De∇4U +Dνω∇4V = q0 + ρHω2U, De∇4V −Dνω∇4U = ρHω2V (1.5)

(∇2 is the Laplace operator).
To eliminate ∇4V and V from the second differential equation of (1.5), we express ∇4V from the first

equation:

∇4V =
q0 + ρHω2U −De∇4U

Dνω
. (1.6)

Elimination of ∇4V from the second equation (1.5) yields

D2
νω

2∇4U = −DνρHω
3V +De(q0 + ρHω2U −De∇4U). (1.7)

We apply the operator ∇4 to the left and right sides of Eq. (1.7) and use (1.6) to eliminate ∇4V from the resulting
equation. As a result, we obtain the eighth-order differential equation for the unknown function U :

(D2
e +D2

νω
2)∇8U − 2ρHω2De∇4U + (ρHω2)2U = −ρHω2q0. (1.8)

We find the function V from (1.7):

V =
ρHω2DeU − (D2

e +D2
νω

2)∇4U +Deq0

ρHω3Dν
. (1.9)

Substituting (1.4) into (1.3), we obtain the following boundary conditions for U and V :

U
∣∣∣
Γ

= a,
∂2U

∂n2

∣∣∣
Γ

= 0, V
∣∣∣
Γ

= b,
∂2V

∂n2

∣∣∣
Γ

= 0. (1.10)

The differential equation (1.8) subject to four boundary conditions (1.10) is of the eighth order. Because of
the high order, serious difficulties arise in the construction of an exact solution of the above-formulated problem.

2. Construction of the Exact Solution. To find a particular solution of the inhomogeneous differential
equation (1.8) for U , we assume that the function U depends only on one geometrical coordinate x, i.e., U = U(x).
We call the function U(x) the fundamental function and denote it by F (x). From (1.8), we obtain the following
ordinary linear differential equation for F (x):

(D2
e +D2

νω
2)FVIII − 2ρHω2DeF

IV + (ρHω2)2F = −ρHω2q0. (2.1)

We find the general solution of the homogeneous equation

(D2
e +D2

νω
2)FVIII − 2ρHω2DeF

IV + (ρHω2)2F = 0.

Its characteristic equation (D2
e +D2

νω
2)αVIII − 2ρHω2Deα

IV + (ρHω2)2 = 0 has the following roots:

α1,2,3,4 = ±

√√√√√√ρHω2
(
±
√
De +

√
D2
e +D2

νω
2 + 4

√
4D2

e + 4D2
νω

2
)

√
8D2

e + 8D2
νω

2
,

α5,6,7,8 = ±i

√√√√√√ρHω2
(
±
√
De +

√
D2
e +D2

νω
2 + 4

√
4D2

e + 4D2
νω

2
)

√
8D2

e + 8D2
νω

2
.
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Fig. 1

The solution of the inhomogeneous equation (2.1) is given by

F (x) = eλx(C1 cos æx+ C2 sin æx) + e−λx(C3 cos æx+ C4 sin æx)

+ eæx(C5 cosλx+ C6 sinλx) + e−æx(C7 cosλx+ C8 sinλx)− Q̄,
(2.2)

λ = 4

√
ρHω2

De

√
1

2
√
θ

+
√

1 + θ

θ
√

8
, æ = 4

√
ρHω2

De

√
1

2
√
θ
−
√

1 + θ

θ
√

8
,

Q̄ =
q0

ρHω2
, θ =

√
1 +

(Dνω

De

)2

.

To construct the solution, we introduce three auxiliary variables ξi:

ξi = (r − ri)ni (i = 1, 2, 3). (2.3)

Here r is the radius-vector of an arbitrary point in the equilateral-triangle region Ω, ri is the radius-vector of
the triangle vertices, and ni are the unit normal vectors to the triangle sides directed inward of Ω (Fig. 1). The
variables ξi have the following geometrical meaning: the value of ξi(x0, y0) calculated at the point M(x0, y0) inside
the equilateral-triangle region Ω is equal to the distance from this point to the ith side of the triangle.

The variables ξi have the following properties.
1. The equations of sides 1, 2, and 3 of the triangle (Fig. 1) have the forms ξ1 = 0, ξ2 = 0, and ξ3 = 0,

respectively.
2. The sum of the variables ξi is a constant. To show this, we use the equality

n1 + n2 + n3 = 0. (2.4)

Using (2.3) and (2.4), we obtain ξ1 + ξ2 + ξ3 = r(n1 + n2 + n3) − r1n1 − r2n2 − r3n3 = −r1n1 − r2n2 − r3n3.
Whence,

ξ1 + ξ2 + ξ3 = const. (2.5)

At the vertex of the triangle, we have

ξ1 = 0, ξ2 = 0, ξ3 = h. (2.6)

Using (2.6), for the sum of the variables ξi from (2.5) we arrive at the relation

ξ1 + ξ2 + ξ3 = h, (2.7)

where h is the height of the triangle. This equality implies that the sum of the distances from any point of the
plane to the sides of the equilateral triangle is a constant equal to its height.

3. If the function F (ξi) depends only on one geometrical variable ξi, the invariance of the Laplace operator
relative to rotation of the coordinate system and translation of the coordinate origin implies the auxiliary differential
relations
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∇2F (ξi) =
d2F (ξi)
dξ2
i

= F ′′, ∇4F (ξi) =
d4F (ξi)
dξ4
i

= F IV.

Substituting successively three variables ξi into the function F (ξi), we obtain three equal functions F (ξ1),
F (ξ2), and F (ξ3) of different variables. In addition to these functions, we introduce the functions

F (ξ1 + ξ2), F (ξ1 + ξ3), F (ξ2 + ξ3), (2.8)

which satisfy the differential equation (2.1). We now show this procedure only for F (ξ1 + ξ2).
With allowance for (2.7), we write the sum ξ1 + ξ2 in the form ξ1 + ξ2 = h− ξ3, i.e., F (ξ1 + ξ2) = F (h− ξ3).

Since F (ξ3) from (2.2) satisfies the differential equation (2.1) for x = ξ3, the function F (h− ξ3) satisfies Eq. (2.1)
for x = h− ξ3.

Using the principle of superposition, we express the solution of problem (2.1) in terms of three functions
F (ξi) and three functions (2.8):

U = F (ξ1) + F (ξ2) + F (ξ3)− F (ξ1 + ξ2)− F (ξ2 + ξ3)− F (ξ1 + ξ3)− q0

ρHω2 − k
. (2.9)

With allowance for (1.10), the boundary conditions take the form

U
∣∣∣
Γ

= F (0)− F (h)− q0

ρHω2
= a,

∂2U

∂n2

∣∣∣
Γ

= F ′′(0)− F ′′(h) = 0,

V
∣∣∣
Γ

=
ρHω2Dea+Deq0 − (D2

e +D2
νω

2)(F IV(0)− F IV(h))
ρHω3Dν

= b, (2.10)

∂2V

∂n2

∣∣∣
Γ

= FVI(0)− FVI(h) = 0.

Substituting (2.2) into (2.9), we obtain the following solution for U :

U = C1ϕ(λ,æ) + C2ψ(λ,æ) + C3ϕ(−λ,æ) + C4ψ(−λ,æ)

+ C5ϕ(æ, λ) + C6ψ(æ, λ) + C7ϕ(−æ, λ) + C8ψ(−æ, λ)− q0/(ρHω2),

ϕ(λ,æ) = eλξ1 cos æξ1 + eλξ2 cos æξ2 + eλξ3 cos æξ3
(2.11)

− eλ(h−ξ1) cos æ(h− ξ1)− eλ(h−ξ2) cos æ(h− ξ2)− eλ(h−ξ3) cos æ(h− ξ3),

ψ(λ,æ) = eλξ1 sin æξ1 + eλξ2 sin æξ2 + eλξ3 sin æξ3

− eλ(h−ξ1) sinκ(h− ξ1)− eλ(h−ξ2) sinκ(h− ξ2)− eλ(h−ξ3) sinκ(h− ξ3).

Let us show that of eight functions ϕ(±λ,æ), ψ(±λ,æ), ϕ(±æ, λ), and ψ(±æ, λ) that enter (2.1), four
functions ϕ(−λ,æ), ψ(−λ,æ), ϕ(−æ, λ), and ψ(−æ, λ) are expressed linearly in terms of the other four functions
ϕ(λ,æ), ψ(λ,æ), ϕ(æ, λ), and ψ(æ, λ). This relation can be found provided a relation between the variables ξi (2.7)
exists. With allowance for (2.7), the function ϕ(−λ,æ) can be written in the form

ϕ(−λ,æ) = −e−λh [cos æhϕ(λ,æ) + sin æhψ(λ,æ)]. (2.12)

Similarly, we write the functions

ϕ(−æ, λ) = −e−æh[cosλhϕ(æ, λ) + sinλhψ(æ, λ)],

ψ(−æ, λ) = e−æh[cosλhψ(æ, λ)− sinλhϕ(æ, λ)], (2.13)

ψ(−λ,æ) = e−λh[cos æhψ(λ,æ)− sin æhϕ(λ,æ)].

By virtue of the linear relations (2.12) and (2.13), we can retain four linearly independent terms in the
solution (2.11) instead of eight terms by setting, for example, C2 = C4 = C6 = C8 = 0. In this case, after
determination of C1, C3, C5, and C7 from the boundary conditions (2.10), the solution for U is expressed in terms
of four functions ϕ(±λ,æ) and ϕ(±æ, λ):

513



a b

c d

1
2 1

2

Fig. 2

U = C1ϕ(λ,æ) + C3ϕ(−λ,æ) + C5ϕ(æ, λ) + C7ϕ(−æ, λ)− q0/(ρHω2), (2.14)

where

C1 =
R(λ,æ)
M(λ,æ)

, C3 = −e2λh R(−λ,−æ)
M(λ,æ)

, C5 =
R(æ,−λ)
M(æ, λ)

, C7 = −e2æh R(−æ, λ)
M(æ, λ)

,

M(λ,æ) = 8λæ(λ2 − æ2) sin æh(2eλh cos æh− e2λh − 1), R(λ,æ) = N1(eλh − cos æh)−N2 sin æh,

N1 =
(
a+

q0

ρHω2

)
(λ4 − 6λ2æ2 + æ4)− Deq0 + ρHω2(Dea−Dνωb)

D2
e +D2

νω
2

,

N2 = 4λæ(a+ q0/(ρHω2))(λ2 − æ2).

To find the solution for V , we first find ∇4U :

∇4U = (λ4 − 6λ2æ2 + æ4)(C1ϕ(λ,æ) + C3ϕ(−λ,æ) + C5ϕ(æ, λ) + C7ϕ(−æ, λ))

+ 4λæ(æ2 − λ2)(C1ψ(λ,æ)− C3ψ(−λ,æ)− C5ψ(æ, λ) + C7ψ(−æ, λ)). (2.15)

Substituting the known expressions (2.14) and (2.15) into (1.9), we obtain the solution for V :
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V =
(DeρHω

2 − (D2
e +D2

νω
2)(λ4 − 6λ2æ2 + æ4))G1 − 4λæ(æ2 − λ2)(D2

e +D2
νω

2)G2

DνρHω3
. (2.16)

Here
G1 = C1ϕ(λ,æ) + C3ϕ(−λ,æ) + C5ϕ(æ, λ) + C7ϕ(−æ, λ),

(2.17)
G2 = C1ψ(λ,æ)− C3ψ(−λ,æ)− C5ψ(æ, λ) + C7ψ(−æ, λ).

3. Properties of the Vibrations. In the particular case of an elastic plate (λν=µν= 0), the resonance
occurs for [4]

ω∗n =
4π2n2

h2

√
D

ρH
(n = 1, 2, 3, . . .).

Vibrations of viscoelastic systems are characterized by the absence of resonance, i.e., the amplitude of nonstationary
vibrations of a plate tends to a certain maximum value, which depends on the viscous and elastic properties of the
plate rather than to infinity. It is difficult to determine the amplitude of plate vibrations by analytical methods
because of the cumbersome expressions for U and V . Therefore, we determine the amplitude numerically.

To study the behavior of a viscoelastic plate vibrating with different frequencies, it is important to find
conditions under which the nodal zones with zero vertical displacements of the points on the middle surface of the
plate appear. In our case, the vibration amplitude vanishes when

√
U2 + V 2 = 0.

Using the equality U = 0, from Eq. (2.14) we obtain
G1 = q0/(ρHω2), (3.1)

where G1 is given by (2.17). Substituting (3.1) into the solution (2.17) for V = 0, we obtain the following equation
of nodal zones:

(DeρHω
2 − (D2

e +D2
νω

2)(λ4 − 6λ2æ2 + æ4))
q0

ρHω2
− 4λæ(æ2 − λ2)(D2

e +D2
νω

2)G2 = 0.

In the absence of external loading, i.e., for q0 = 0, this equation is simplified to G2 = 0.
In practice, various structural members are usually made from materials having a different viscosity. To

reveal the specific features of vibrations of these plates, we introduce a coefficient that characterizes the ratio
between the viscous and elastic properties: χ = Dν/De.

Figure 2 shows the level lines of the amplitude A = const and the amplitude distribution along the height of
an equilateral triangle (h = 200 cm) for a viscoelastic plate with χ = 0.0005 sec for frequencies lying in the interval
of the resonance frequencies of an elastic plate.

The behavior of the plate changes drastically, beginning from the frequency interval ω∗3 < ω < ω∗4 . Nine
oval nodal zones 1 with a close-to-zero amplitude of vibrations appear (Fig. 2c). It is noteworthy that in addition
to these nodal zones, there are zones 2 with a small amplitude of vibrations (Fig. 2c) which form a complex figure
with six oblong branches emanating from the plate center.

In summary, the following specific features of vibrations of a triangular plate are noteworthy. An analysis
of the exact solution shows that the nodal zones that remain immovable during vibrations exist. Adjacent to the
nodal zones are small-amplitude zones whose dimensions increase with vibration frequency. These zones are located
near the center (Fig. 2d). With further increase in frequency, the small-amplitude zones become larger and occupy
the entire central part of the plate. In this case, only regions adjacent to the plate boundary perform vibrations
owing to the forced vibrations of the boundary.

REFERENCES

1. Y. Sing, M. Ahmad, and H. H. Hilton, “Dynamic responses of plates with viscoelastic free layer damping
treatment,” Trans. ASME, J. Vibr., Acoust., Stress Reliability Design, No. 118, 362–367 (1996).

2. Z. Yuanyuan and C. Changjun, “Stability analysis of viscoelastic rectangular plates,” Acta Mech. Solida Sinica,
No. 17, 275–282 (1996).

3. O. E. Boshnich, “Calculation of the vibrations of plates under various harmonic excitations with allowance for
energy dissipation in a material,” Probl. Prochn., No. 4, 1170–129 (1997).

4. N. A. Chernyshov and A. D. Chernyshov, “Vibrations of an elastic triangular plate under the combined action
of uniformly distributed transverse loading and uniform tension,” Izv. Inzh.-Tekhnol. Akad. Chuvash. Resp.,
No. 11, 87–95 (1998).

5. S. P. Timoshenko, Vibration Problems in Engineering, Van Nostrand, Toronto–New York–London (1955).

515


